
Volume � ��� ����� pp	 
�� � ��


No�arbitrage� Change of Measure and Conditional

Esscher Transforms

Hans B�uhlmann

Freddy Delbaen

Paul Embrechts

Departement of Mathematics� ETHZ� CH����� Z�urich� Switzerland

Albert N� Shiryaev

Steklov Mathematical Institute� Vavilova� GSP�	 		
��� Moscow� Russia

�� Introduction

This paper grew out of a seminar at the Department of Mathematics at the
ETH� Z�urich during the Summer Semester of ���� on the subject of mathemat�
ical �nance and insurance mathematics	 It should be viewed as a contribution
towards bridging the existing methodological gap between both �elds� espe�
cially in the area of pricing derivative instruments	 Both insurance and �nance
are interested in the fair pricing of �nancial products	 For instance� in the
case of car insurance� depending on the various characteristics of the driver�
a so�called net premium is calculated which should cover the ecpected losses
over the period of the contract	 To this net premium� various loading factors

for costs� �uctuations�			� are added	 The resulting gross premium is also
subject to market forces which imply that a market�conform premium is ��
nally charged	 The more an insurance market is liquid 
many potential o
ers
of insurance� deregulated markets�� the more a � correct� fair� price may be
expected to emerge	 Very important in the process of determining the above
premium is the attitude of both parties involved towards risk	 Within the more
economic literature this attitude towards risk can be described through the no�
tion of utility	 Utility theory enters as a tool to provide insight into decision
making in the face of uncertainty	 For a very readable introduction within the
context of insurance� see Bowers et al	 ���	 An alternative economic tool
is equilibrium theory	 Depending on the economic theory used� a multitude
of possible premiums may result� one of which is the time�honoured Esscher
principle	 Rather than being based on the expected loss itself� the Esscher
principle starts from the expectation of the loss under an exponentially trans�
formed distribution� properly normalised	 In B�uhlmann ���� ���� the Esscher
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principle is discussed within the utility and equilibrium framework	 Besides the
pricing of individual risks 
claims� say�� more complicated insurance products
involve time and hence are based on speci�c stochastic processes	 The classical
insurance risk processes are of the compound Poisson type or their generalisa�
tions like mixed and doubly stochastic compound Poisson processes	 The main
feature of such processes� making them distinct from the typical di
usion type
models in �nance� is their jump structure	 Indeed� when we turn to fair pricing
in �nance� the standard reasoning uses the so�called no�arbitrage 
or no free
lunch� approach which says that there is no such thing as a riskless gain	 The
precise mathematical formulation of this economic principle brings in the by
now fundamental notion of risk neutral martingale measure	 In the case where
the underlying stochastic process is � nice � 
geometric Brownian motion� say��
exactly one such measure exists and the fair price of a contingent claim is the
expectation with respect to this measure� properly discounted	 The latter� so�
called complete case is rare in insurance	 Due to the jump structure of standard
risk processes� we are in the so�called incomplete case	 As a consequence� risk
cannot fully be hedged away and in most cases� there will be in�nitely many
such equivalent martingale measures so that pricing is directly linked to an atti�
tude towards risk	 Whereas in classical insurance� the question becomes �which
premium principle to use�� within the 
incomplete� �nance context it becomes
�which equivalent martingale measure to use�	 This is exactly the point where
the Esscher transform enters as one of the possible pricing candidates	 Go�
ing back to a fundamental paper of Esscher ����� the Esscher transform is
by now standard methodology in insurance� gradually however its appearance
within mathematical �nance is becoming more and more prominent� see for
instance the beautiful paper by Gerber and Shiu ���� and the references and
discussions therein	 An interesting paper� coming more from the realm of math�
ematical �nance is Grandits ����	 The present paper should be looked at in
conjunction with B�uhlmann et� al	 ��� where special attention is given to
discrete models	 As explained above� typical insurance processes involve a jump
component besides a possible di
usion term	 It is therefore natural to present
the necessary mathematical methodology needed for discussing pricing within
both insurance and �nance within the wider theory of semi�martingales	 This
is exactly what is done in the present paper	 The classical notion of Esscher
transform for distribution functions is generalised to stochastic processes	 For
a discussion of Esscher transform in a distributional context� see Jensen ����	
In Embrechts et� al� ���� an application to the approximation of the total
claim amount distribution in the compound Poisson and negative binomial case
is given	

���� Some notation

Suppose that a �nancial process 
stock returns� spot rates� zero coupon bonds�
value of a derivative instrument�� � � � S � 
St�t�� is given on a �ltered probabil�
ity space 
��F � 
F t�t��� P � where F � 
F t�t�� denotes the � �ow of informa�
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tion�	 Mathematically the latter means that F consists of an increasing family
of sub �� algebras� i	e	 for all s � t� Fs � Ft � F � Assume further that S is of
� exponential form��

St � S� e
Ht � H� � �� t � �� 
��

where H � 
Ht�t�� is a semimartingale with respect to F andP 	 The latter
will be denoted by H � Sem 
F� P � or H � Sem 
P �	 We remark that the
notion of semimartingale does not depend on the measure P 	 More precisely� if
Q � P are two equivalent probability measures� then Sem 
P� � Sem 
Q�	 For
a precise de�nition see for instance Jacod and Shiryaev ���� and Rogers

and Williams ����	 Using It�o�s formula for f � C�� one obtains�

f
Ht� � f
H�� �

Z t

�

f �
Hs��dHs �
�

�

Z t

�

f ��
Hs��dhH
cis

�
X

��s� t

�
f
Hs�� f
Hs��� f �
Hs���Hs

�
� 
��

where �Hs � Hs�Hs� and hHci is a quadratic characteristic of the continuous
martingale part Hc of H 	 Hence for the case 
�� above�

dSt � St�d �Ht 
��

with

�Ht � Ht �
�

�
hHcit �

X
��s�t


e�Hs � ���Hs�� 
��

In the class of semimartingales the linear equation 
�� has a unique solution�

St � S� E
 �H�t 
��

where E
 �H� is called the Dol�eans stochastic exponential

E
 �H�t � exp

�
�Ht �

�

�
h �Hcit

� Y
��s�t


� � � �Hs�e
�� �Hs � 
��

It should be remarked that for every semimartingaleH � 
Ht�� with probability
one� X

��s� t

j�Hsj
� � �� 	t � �� 
 �

From 
 � it immediately follows that for each t � �� there are only �nitely
many time points s � t such that j�Hsj �

�
� 	 Consequently� the in�nite sums

and products in 
�� and 
�� are absolutely convergent and hence �H and E
 �H�
are well de�ned	
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���� Discrete time

Consider the set�up 
�� but now in discrete time�

Sn � S� e
Hn � H� � �� n � �� �� �� � � � 
��

where H � 
Hn�n� � is a stochastic sequence de�ned on a �ltered probability
space 
��F � 
Fn�n� �� P �	 Clearly� 
�� can formally be considered as a special
case of 
�� by de�ning

Ft � Fn � Ht � Hn � n � t � n� ��

Put

�Hn �
X

��k�n


e�Hk � �� 
��


to be compared with 
���� then we obtain

Sn � S�
Y

��k�n


� �� �Hk� � S�E
 �H�n� 
���

The latter should be compared with 
�� and 
��	 In the sequel we denote

hk � �Hk
� Hk �Hk���

and

�hk � � �Hk
� �Hk � �Hk����

Recall that

hk � ln
Sk
Sk��

and hence can be viewed as a compound return� whereas

�hk �
Sk
Sk��

� � �
�Sk
Sk��

� ehk � �

stands for simple return	 Using this terminology and the correspondances
stated above� 
�� can be viewed as a continuous model for compound return�
whereas 
�� is the continuous analogon of simple return	 It is useful to remark
that the representation 
�� lends itself naturally for statistical data analysis	
However� with respect to probabilistic analysis� the representation 
�� turns out
to be more advantageous	 An example of the latter is the following� E
 �H� is a
local martingale if �H is a local martingale	
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���� No�arbitrage and equivalent martingale measures�

The � equivalence � of the notions no�arbitrage� no free lunch and the existence
of equivalent martingale measures belongs to the folklore of mathematical ��
nance	 The key underlying idea is the local equivalence of martingale measures�

i	e	 !P
loc
� P on 
��F� meaning that for each t � �� ePt � Pt 
equivalence of

probability measures� where Pt � P jFt� ePt � eP jFt and such that S � 
St�

is a martingale or local martingale with respect to eP�
In discrete time� n � �� �� � � � � N � the precise formulation of the above is as

follows	
Equivalent are


a� no�arbitrage� and


b� there exists a probability measure eP on 
��F� so that ePN � PN and

S � 
Sn�n�N is a ePN �martingale	

In the continuous time case� the situation is much more delicate	 A solution is
to be found in Delbaen and Schachermayer � � and ��� and the references
therein	 Independent of the precise equivalence statements� the construction
of all equivalent martingale measures in a particular situation is important	
A slightly less ambitious goal would be the construction of certain subclasses	
The main aim of our paper is exactly the solution of this technical problem	
We shall also discover the so�called conditional Esscher transform as a special
case of the change of measure paradigm in stochastic calculus	

�� Some facts about semimartingales

���� De�nition

Below we summarise the basic de�nitions and results concerning semimartin�
gale theory of relevance in insurance and �nance	 The c"adl"ag 
right�continuous
with left limits� stochastic process H � 
Ht�t� � de�ned on a �ltered prob�
ability space 
��F � 
Ft�t� �� P � is a semimartingale if H admits a canonical
decomposition

Ht � H� �At �Mt� t � �� 
���

where A � 
At� � V 
a process of bounded variation�� M � 
Mt� � Mloc 
a
local martingale�	 Furthermore� we have that for each t � �� At and Mt are
Ft�measurable	

We recall that M � Mloc if and only if there exists a sequence of 
F t�t� �

�stopping times 
�n�n� � such that �n 
 � 
P � a�s�� for n � � and for
each n � �� the stopped process

M�n � 
M�n
t � with M�n

t � Mt� � n � n � ��

is a martingale�

EjM�n
t j � �� E
M�n

t jFs� �M�n
s 
P � a�s��� s � t�
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We would like to stress that local martingales are more than just martingale
modulo boundedness conditions	 Indeed� there exist local martingales pos�
sessing strong integrability properties which nonetheless are not martingales	
See for instance Revuz and Yor ����� Chapter V � Exercise 
����� where a
local martingale is given� bounded in L�� but which is not a martingale	 In
the case of discrete time� we have the following nice characterisation of local
martingales # see for instance Jacod and Shiryaev ����� Chapter �� ���� or
Liptser and Shiryaev ����� Chapter VII�x�	 Let X � 
Xn�n� � be a stochas�
tic sequence de�ned on a �ltered probability space 
��F � 
Fn�n� �� P �	 X is
assumed adapted� i	e	 Xn is Fn � measurable for all n � � and EjX�j � �	
Then the following conditions are equivalent�


�� X is a local martingale�


�� X is a martingale transformation� i	e	 there exists a martingale Y � 
Yn�
and a predictable sequence V � 
Vn� 
meaning that for each n � �� Vn
is Fn�� � measurable� such that for n � ��

Xn � X� �
X

��k�n

Vk�Yk� �Yk � Yk � Yk���


�� X is a generalised martingale� i	e	

E
jXnj jFn��� � �� n � ��

and
E
Xnj Fn��� � Xn���


The key point in the latter conditions is that we do not assume integrability
of Xn� n � ��

Remark� The condition 
�� above can be interpreted as Xn is the value of
a trading strategy V on an underlying asset Y 	 This shows that the notion
of local martingales lies at the heart of stochastic processes in �nance and
insurance	 Unfortunately� the continuous time analogue of the above result is
false	

���� Semimartingale representations

Denote by � � �
	# ds� dx�
or d�� the measure describing the jump structure
of H �

�
	# 
�� t� �� A� �
X

��s� t

I
�Hs
	� � A�� t � ��

where A � B
R�f�g���Hs � Hs � Hs� and I
�� stands for the indicator
function	 By 
 � 

	# ds� dx� 
or dv� we denote a compensator of �� i	e	 a
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predictable measure 
see Jacod and Shiryaev ����� Chapter II� �	�� with the
property that � � 
 is a local martingale measure	 This means that for each
A � B
R�f�g�� �

�
	# 
�� t� � A�� 

	# 
�� t� � A�
�
t� �

is a local martingale with value � for t � �	 The latter property is almost
equivalent to the local martingale property of the signed measure � � 
	 We
shall not enter into the subtle di
erence here	

A semimartingale H � 
Ht�t� � is called special if there exists a decompo�
sition 
��� with a precticable process A � 
At�t� �	 See Jacod and Shiryaev

���� where it is also shown that every semimartingale with bounded jumps

j�Ht
	�j � b ��� 	 � �� t � �� is special	

Let � be a truncation function� e	g	 �
x� � xI
jxj � ��	 Then �Hs �
�
�Hs� 
� � if and only if j�Hsj � b for some b � �	 Hence

�
H
��t �

X
��s� t


�Hs � �
�Hs��

denotes the jump part of H corresponding to big jumps	 The number of the
latter is still �nite on ��� t�� for all t � �� because for all semimartingalesX

��s� t


�Hs�
� ��� P � a�s�

The process H
�� � H �
�
H
�� is a semimartingale with bounded jumps and

hence it is special�

H
��t � H� �B
��t �M
��t� 
���

where B
�� is a predictable process and M
�� is a local martingale	
Every local martingale M
�� can be decomposed as�

M
�� � M c
�� �Md
��� 
���

where Mc
�� is a continuous 
martingale� part and Md
�� is a purely discon�
tinuous 
martingale� part�

Md
��t �

Z t

�

Z
�
x�d
� � 
�� 
���

More details� including a proof of 
���� are to be found in Jacod and Shiryaev
����� Chapter II� ����	 It is clear that

�
H
��t �

Z t

�

Z

x� �
x��d�� 
���

�� 



Consequently H has the following canonical representation�

Ht � H� �B
��t �Mc
��t �Z t

�

Z
�
x�d
� � 
� �

Z t

�

Z

x� �
x��d�� 
���

a formula going back to L�evy and Khintchin	
The continuous martingale part M c
�� does not depend on � and will be

denoted by Hc 
the continuous martingale part of H�	 Consequently�

Ht � H� �B
��t �Hc
t �

Z t

�

Z
�
x�d
� � 
�

�

Z t

�

Z

x� �
x��d�� 
� �

Denote by hHci a predictable quadratic characteristic of Hc� i	e	 
Hc���hHci
is a local martingale	

We �nally arrive at the triplet of predictable characteristics of the semi�
martingale H �

T 
�� � 
B
��� hHci� 
��

In the case �
x� � xI
jxj � �� we denote B � B
��	 Then 
� � takes on the
form�

Ht � H� �Bt �Hc
t �

Z t

�

Z
jxj� �

xd
�� 
�

�

Z t

�

Z
jxj� �

xd�� 
���

In Jacod and Shiryaev ����� Chapter II� � it is shown that if H is a semi�
martingale� then

�B
��t
	� �

Z
�
x�

	# ftg � dx��

where


	# ftg � dx� � 

	# 
�� t� � dx�� 

	# 
�� t� � dx�

and

x� � �� � 
 � Aloc�

i	e	 the process 

R t
�

R

x� � ��d
�t� � is locally integrable in so far that there

exist stopping times �n 
 � as n��� such that for n � �

E
� Z �n

�

Z

x� � ��d


�
���

���



Using this notation� H turns out to be a special semimartingale if and only if


x� � jxj� � 
 � Aloc�

Further� H is a square integrable semimartingale if and only if

x� � 
 � Aloc�

If H is a special semimartingale� then the canonical representation 
� � is valid
with �
x� � x� i	e	

Ht � H� �Bt �Hc
t �

Z t

�

Z
xd
� � 
�� t � �� 
���

with B � B
��	

There are various reasons why semimartingales play a fundamental role in
insurance and �nance 
and indeed in many more applications��


i� They form a wide class of processes including stochastic sequences in dis�
crete time� martingales� super � and sub � martingales� di
usion processes�
di
usions with jumps� processes with independent increrements 
if for ev�
ery � � R� 
Eei�Ht �t� � has bounded variation�	 This is especially impor�
tant in the intersection of insurance and �nance where models involving
both a di
usion component as well as a jump component are relevant	


ii� They form the most general class of stochastic processes for which a stochas�
tic integration theory can be worked out� the latter is a consequence of the
famous Bichteler� Dellacherie� Kussmaul� M�etivier and Pellaumail theorem

see Rogers and Willliams ����� Section IV	 ���	 A full stochastic cal�
culus� including It�o�s lemma for semimartingales exists	


iii� The knowledge that a stochastic process is not a semimartingale may have
important implications in �nance in so far that then often explicit arbi�
trage strategies can be worked out	 A typical example concerning so�called
fractional Brownian motion is to be found in Rogers �� �	 See also Del�
baen and Schachermayer � � where it is shown that a very weak form
of the no�arbitrage property implies that the price process is already a
semimartingale	

���� Examples

Discrete time In this case we don�t really need the heavy semimartingale
machinery� we only include this case for illustrative purposes	 Consider the
stochastic sequence H � 
Hn�n� � with hn � �Hn � Hn �Hn��	
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Hence�

Hn � H� �
X

��k�n

hk

� H� �
X

��k�n

�
hk� �
X

��k�n


hk � �
hk�� 
���

� H� �
X

��k�n

E��
hk�jFk���

�
X

��k�n


�
hk��E��
hk�jFk���� �
X

��k�n


hk � �
hk���

De�ne for all A � B
Rn f�g�� k � � �

�k
A� � I
hk � A� � I
�Hk � A��


k
A� � E�I
hk � A�jFk��� � P 
hk � AjFk����

where conditional expectations are always taken as regular versions	 Then

�
	# 
�� n� � A� �
X

��k�n

�k
A��



	# 
�� n� � A� �
X

��k�n


k
A��

yielding the canonical representation 
see 
� ��

Hn � H� �B
��n �
X

��k�n

Z
�
x�d
�k � 
k�

�
X

��k�n

Z

x� �
x��d�k � 
���

where

B
��n �
X

��k�n

Z
�
x�d
k � 
���


We could have written 
k
dx� for d
k etc	 � � � � Because there is no continuous
part� the characteristic triplet reduces to

T 
�� � 
B
��� �� 
� 
���

where
B
�� � 
B
��n�n� ��� A� 
 � 

n�n� ��

���



Processes with independent increments �I�I�	 A process H � 
Ht�t� � with I	I	
is a semimartingale if and only if for each � � R� 
Eei �Ht�t� � is a function
of bounded variation	 For a proof� see Jacod and Shiryaev ����� Chapter
II�����	 A remarkable fact for such processes is that their triplet of predictable
characteristics only has deterministic components	 If H � 
Ht� is continuous
in probability� then B
��t� � Hc �t and 


�� t� � dx� are continuous in t and
the L�evy � Khintchin formula yields

E expfi�
Ht �H��g � exp fi�B
��t �
��

�
Ct

�

Z t

�

Z

ei�x � �� i��
x��

ds � dx�g 
���

where Ct �� Hc �t is the variance of the continuous Gaussian part of H � and
B
�� and 
 are the �rst and third component in the triplet T 
�� � 
B
��� �
Hc �� 
� of H written in semimartingale form	 If the I	I	 process is moreover
homogeneous 
stationary�� also referred to as a L�evy process� then

B
��t � tb
��

Ct � tC 
���



dt � dx� � dt � F 
dx�

where F is a distribution function on R	 For a textbook treatment of L�evy
processes� see Bertoin ���	 Hence in this case the triplet T 
�� is reduced to

b
��� C� F 
dx��	

Brownian motion with drift and Poisson jumps Suppose that

Ht � bt� �Wt �

NtX
k��


k 
���

where 
� 
�� 
�� � � � are iid random variables with F 
x� � P 

 � x�� N �

Nt�t� � is a homogeneous Poisson process with intensity � � �� and W �

Wt�t� � is standard Brownian motion	 Suppose furthermore that the pro�
cesses W�N and 

i� are jointly independent	 In this formulation� H in 
���
in the recent literature either occurs as a classical risk process perturbed by
Browian motion
see Gerber ������ or as a model for catastrophic insurance
futures 
see for instance Cummins and Geman ����
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Then

Ht � bt� �Wt �

NtX
k��


k 
� �

� bt� �Wt �

Z t

�

Z
xd�

� 
bt�

Z t

�

Z
�
x�d
� � 
�Wt �

Z t

�

Z
�
x�d
� � 
��

�


Z t

�

Z

x� �
x��d��

� t
b� �

Z
�
x�F 
dx�� � 
�Wt �

Z t

�

Z
�
x�d
� � 
��

�


Z t

�

Z

x� �
x��d���

Consequently�
T 
�� � 
B
��� hHci� 
��

where

B
��t � t
b� �

Z
�
x�F 
dx���

� Hc �t � ��t� 
���

d
 � �dtF 
dx��

Di
usion processes with jumps These processes can be viewed as semimartin�
gales with predictable characteristic triplet T 
�� � 
B
��� C� 
� where

B
��t �

Z t

�

b
s�Hs�ds� 
b � B���

Ct �

Z t

�

C
s�Hs�ds 
���



	# dt � dx� � dt � Kt
Hs
	�� dx��

where Kt
x� dy� is a Borel transition kernel from R� � R in R# see Jacod and

Shiryaev ����� Chapter III��	

���� Conditional Esscher transforms

Consider a semimartingale H � 
Ht�t� � with triplet T � 
B�C� 
� where
we dropped for notational convenience the dependence on �	 Also for simplicity�
we take �
x� � xI
jxj � ��	 We �rst introduce the cummulant process A
u� �

A
u�t�t� � associated with H �

A�u�t � iuBt �

�

�
u
�
Ct �

Z
�ei u x

� �� iu��x���
�
��� t� � dx

�
� �	��

���



Suppose that �A
u� 
� ��� then the stochastic exponential G
u� � E
A
u��
de�ned in 
�� cannot take zero values	 Now de�ne the process

Xt
u� �
ei uHt

E
A
u��t
� t � �� 
���

An important property of semimartingales is the following characterisation�

H is a semimartingale with triplet 
B�C� 
�

if and only if 
���

X � 
Xt
u��t�� is a local martingale for every u � R#

see Jacod and Shiryaev ����� Chapter II� �	��	 For discrete time processes�

��� reduces to

�A
u�n �

Z

ei u x � ��
n
dx� � E
eiuhn � �jFn���� 
���

However� in this case 
�� implies that

E
A
u��n �
Y

��k�n


� ��A
u�k��

�
Y

��k�n

E
eiuhn jFn����

Hence in discrete time for a stochastic sequence H � 
Hn� with �Hn � hn
and so that E
eiuhn jFn��� 
� �� n � �� the sequence�

ei uHnQ
��k�n E
ei u h k jFk���

	
n� �


���

is a local martingale	 Of course we don�t need the deep characterisation result

��� in order to prove 
���� a more direct argument can be given in this case	
Similarly� suppose Eeakhk � �� k � �� for some constants a�� a�� � � � � then
the sequence Z � 
Zn�n� � with Z� � � and

Zn �
Y
k�n

eakhk

E
eakhk jFk���
� n � � � 
���

is a martingale	 The latter follows immediately from the adaptiveness of H
and elementary properties of conditional expectation	 Property 
��� allows us

to construct a family of measures f ePNg such that d ePN � ZNdPN andePN � ePN��jFN � The conditional distribution

ePN 
hN � AjFN��� � E



IA
hN �

eaN hN

E
eaN hN jFN���

��FN��� 
���

���



is called the conditional Esscher transform	 In the traditional actuarial context�
the hi�s are independent and hence 
��� reduces to an unconditional expecta�
tion� the Esscher transform�

ePN 
hN � A� � E



IA
hN �

eaN hN

EeaN hN

�
� 
� �

�� Predictable Conditions for S � Mloc 
P �� S �M 
P �

���� One asset

In order to investigate whether S � M
P � 
i	e	 S is a P�martingale� it may
be more convenient to �rst look for conditions so that S � Mloc
P � 
i	e	 S
is a local P�martingale� and then use the result in Jacod and Shiryaev �����
Chapter I� �	� that a local martingale S is a uniformly integrable martingale
if and only if S belongs to the class 
D�� that is the set of random variables
fST � T �nite stopping timeg is uniformly integrable	 We hence start with
the representation 
��� i	e	

St � S�E
 �H�t

and use the property 
see Section ���� that

S �Mloc 
P � if and only if �H �Mloc 
P �� 
���

From 
�� and 
� � we obtain�

�Ht � Ht �
�

�
hHcit �

Z t

�

Z

ex � �� x�d�

� H� �B
��t �Hc
t �

�

�
hHcit �

Z t

�

Z
�
x�d
� � 
� 
���

�

Z t

�

Z

x� �
x��d� �

Z t

�

Z

ex � �� x�d�

� H� �B
��t �Hc
t �

�

�
hHcit �

Z t

�

Z
�
x�d
� � 
�

�

Z t

�

Z

ex � �� �
x��d��

Suppose now that jex � �� �
x�j � 
 � Aloc 
i	e	 the process 

R t
�

R
jex � �

� �
x�jd
�t� � is locally integrable�� thenZ t

�

Z

ex � �� �
x��d� �

Z t

�

Z

ex � �� �
x��d


�

Z t

�

Z

ex � �� �
x��d
� � 
�� 
���

where the last integral is a local martingale# see Jacod and Shiryaev �����
Chapter II� ���� and Liptser and Shiryaev ����� Chapter III�x �	 Hence from

���




����

�Ht � H� �B
��t �Hc
t �

�

�
hHcit �

Z t

�

Z

ex � �� �
x��d


�

Z t

�

Z

ex � �� �
x��d
� � 
� �

Z t

�

Z
�
x�d
� � 
�

� H� �Kt �Hc
t �

Z t

�

Z

ex � ��d
�� 
��

where 
see 
����

Kt � A
�i�t � B
��t �
�

�
hHcit

�

Z t

�

Z

ex � �� �
x��d
� 
���

Therefore �Ht � Kt � 
local martingale�t	 Since K � 
Kt� is a predictable
process� it follows that

�H �Mloc 
P � if and only if K � ��

See Jacod and Shiryaev ����� Chapter I� �	�� and Liptser and Shiryaev

����� Chapter I��� Theorem � for more details	

���� Two assets

Suppose that we now have a second asset S� � 
S�t �t� � with

S�t � S�� e
H�

t � 
���

Similar to the discussions above 
see 
��� we introduce

�H�
t � H�

t �
�

�
hH�cit �

X
��s� t


e�H�

s � ���H�
s � 
���

and obtain
S�t � S�� E


�H��t�

Therefore

St
S�t

�
S�
S��

E
 �H�t

E
 �H��t
� 
���

It is now easy to check by It�o�s formula that

E
 �H����t � E
� �H��t� 
���

���



where

�H�
t � �H�

t � h �H
�cit �

X
��s� t


� �H�
s �

�

� �� �H�
s

� 
���

From 
��� and 
��� we obtain that

St
S�t

�
S�
S��

E
 �Ht� E 
� �H��t� 
� �

If in general U� V � Sem
P �� then the so�called Yor addition formula 
see for
instance Rogers and Williams ����� Section IV	 ��� yields

E
U�E
V � � E
U � V � �U� V �� 
���

with the quadratic covariation process

�U� V �t � hU c� V cit �
X

��s� t

�Us�Vs� 
���

So from 
� �� 
����

St
S�t

�
S�
S��
E
 �H � �H� � � �H�� �H���t�

It is not di$cult to check that

�H � �H� � � �H�� �H�� � �H � �H� � h �H�c � �Hc� �H�ci

�
X � �H�
� �H� �� �H�

� �� �H�
�

If S� stands for a riskless asset� i	e	 H� is predictable� then �H�c � H�c � �
and

St
S�t

�
S�

S��
E
�
�H � �H� �

X � �H�
� �H� �� �H�

� �� �H�

�
� 
���

Hence
S

S�
� Mloc 
P �

if and only if 
���

�H � �H� �
X � �H�
� �H� �� �H�

� �� �H�
� Mloc 
P �

���



The result 
��� can be very useful in �nding su$cient conditions for S�S� to be
a local P� martingale	 For instance� if � �H� � �� then �H�

t � H�
t 
we suppose

that H� is predictable� and we obtain

Kt �H�
t � � implies

S

S�
� Mloc 
P �� 
���

Also� if � �H � � �H�� then

Kt �H�
t �

X
��s� t


e�H�

t � ���H�
s � � �

implies 
���

S

S�
�Mloc 
P ��

���� Examples

Discrete time In the case of discrete time

�H � �H� �
X � �H�
� �H� �� �H�

� �� �H�
�
X � �H �� �H�

� �� �H�
�

so that because of 
����
S

S�
� Mloc 
P �

mboxif and only if X
k�n

�hk � �h�k
� � �h�k

� Mloc 
P � � 
���

However �hk � ehk � �� �h�k � eh
�

k � �� so that by Fk��� measurability of h�k we
obtain the following su$cient condition

E
ehk jFk��� � eh
�

k � k � � implies
S

S�
�Mloc 
P ��

Processes with independent increments Suppose that H � 
Ht�t� � is a process

with independent increments� the triplet T 
�� given by 
��� and let �H�
t � rt	

Then

Kt � t


b
�� �

C

�
�

Z

ex � �� �
x��F 
dx�

�
�

so that

b
�� �
C

�
�

Z

ex � �� �
x��F 
dx� � r implies

S

S�
�Mloc 
P ��

�� 



Brownian motion with drift and Poisson jumps For the notation� see Section
������ In this case

Kt � t
�
b�

��

�
� �

Z

ex � ��F 
dx�

�
�

whence

b�
��

�
� �E
e� � �� � � implies

S

S�
� Mloc 
P ��

�� Predictable conditions for the existence of a locally

equivalent probability measure eP such that S � Mloc 
 eP �� S �M 
 eP �

���� General results

If we have a measure eP loc
� P � then the likelihood 
Radon�Nikodym derivative�

process Z � 
Zt�t�� with

Zt �
d ePt
dPt


���

is strictly positive 
Zt � �� P and eP � a�s�� t � �# see for instance Rogers
and Williams ��� � Theorem IV�� ��� We therefore can de�ne the process
M � 
Mt�t�� as follows�

Mt �

Z t

�

dZs
Zs�

� 
���

which satis�es M �Mloc 
P �	 Since dZt � Zt� dMt� we have that

Zt � Z� E
M�t 
� �

where

E
M�t � expfMt �
�

�
hMcitg

Y
��s� t


� ��Ms�e
��Ms � 
���

The local martingale property of M implies that the following decomposition
holds�

Mt � M� �

Z t

�

�sdH
c
s �

Z t

�

Z
W 
�� s� x�d
� � 
� � fMt�

where � andW satisfy some integrability conditions 
see Jacod and Shiryaev

����� Chapter III� �	��� and fM is a residual martingale part which is orthogonal
to
R �
� �sdH

c
s and

R �
�

R
W 
�� s� x�d
��
�	 Unfortunately� we do not have su$cient

tools in order to control the properties of fM 	 However� for many interesting
cases� fM � �	 The latter for instance holds if the triplet T 
�� � 
B�C� 
� for
H de�nes the distribution of H uniquely	 The following are cases where this
property holds�

���




i� Processes with independent increments	


ii� Strong solutions of stochastic di
erential equations with respect to Brow�
nian motion	


iii� In the case of Poisson random measure in discrete time where 

	� fng
� A� � P 
�Hn � AjFn���� n � �� which gives us the possibility to calcu�
late the 
unconditional� distribution of 
Hn�n��	

A possible approach consists of considering the structure of Z under the as�

sumption that eP loc
� P exists	 Hence assume that Z � 
Zt�t�� satis�es the

representation 
� �� 
���� where

Mt � M� �

Z t

�

�sdH
c
s �

Z t

�

Z
W 
�� s� x� d
�� 
�� 
���

Can we from this representation deduce the existence of eP% This approach
may work if at least the characteristic triplet of H de�nes the measure P 
i�e�
the law of H� uniquely	 We assume the �nite horizon case � � t � T �� and
normalise E ZT � �	 In this case we can simply de�ne

d ePT � ZT dPT �

The di$cult part in this plan de campagne is to �nd conditions on 
��W � and

B�C� 
� which imply that Z � 
Zt���t�T is a martingale with E ZT � �	
A whole series of papers exists on this topic� see for instance Jacod and

Memin ����� Liptser and Shiryaev ����� Novikov ����� ����� Lepingle and
Memin ���� and Grigelionis �� �	 
See Schachermayer ���� and Delbaen

and Schachermayer ��� for a case where fM cannot be taken to be zero&� So
suppose that M � 
Mt���t�T de�ned as in 
��� is a positive martingale with
E ZT � �	 We now want to understand which conditions on 
��W � imply that

S � Mloc 
 ePT �	 First observe that
SZ � Mloc 
PT � implies S � Mloc 
 ePT �� 
���


see Jacod and Shiryaev� Chapter III� �	�� so that it su$ces to �nd condi�
tions implying

E
 �H�E
M� �Mloc 
PT � � 
���

Also note that

�HZ �Mloc 
PT �� �H �Mloc 
 ePT �
� E
 �H� �Mloc 
 ePT �
� S �Mloc 
 ePT ��
���



so that instead of checking 
���� one may look for conditions implying

�HE
M� �Mloc 
PT �� 
���

One easily shows that 
��� and 
��� are equivalent	
From 
��� and Yor�s formula 

���� one obtains�

E
 �H�E
M� � E
 �H �M � � �H�M ��

� E
 �H �M � h �Hc�M ci�
X

� �H�M� � 
���

Moreover� 
��� yields

�Ht � Kt �Hc
t �

Z t

�

Z

ex � ��d
�� 
� � 
���

From 
��� and 
���� assuming that the process � �H�M � is locally integrable� we

can �nd its compensator �� �H�M �	 The latter is a predictable process with the

property that � �H�M �� �� �H�M � � Mloc 
P �� The following form results see also
Jacod and Shiryaev ����� Chapter II� �	� �

�� �H�M �t �

Z t

�

�sdhH
cis �

Z t

�

Z
W 
ex � ��d


�
X
s� t

Z
W 
s� x�

fsg � dx�

Z

ex � ��

fsg � dx�� 
���

It turns out to be convenient to denote W � Y � �	 The main reason for
this is the following	 If H is a P� semimartingale with triplet 
B�C� 
� and

d ePT � ZT dPT � then H is also a ePT� semimartingale with triplet 
 eB� eC� e
�
where de
 � Y d
� Y 
	� t� x� is positive and predictable and the process W in
the de�nition of M 
see 
���� has the following representation 
Jacod and

Shiryaev ����� Chapter III� �	���

W � Y � � �
�Y � a

�� a
I
a � ��� 
���

a � 
at
	�� where at
	� � 

	# ftg � R�

�Yt �

Z
Y 
	� t� x�

	# ftg � dx� �

Both in the so�called quasi�left continuous case 
i�e� at � �� as well as in the
discrete�time case where at
	� � P 
�Ht � RjFt��� � � we have that W �
Y � �	 Therefore� as a corollary we obtain

�� �H�N �t �

Z t

�

�sdhH
cis �

Z t

�

Z

Y � ��
ex � ��d
 � 
� �

���



Together with 
���� 
��� and 
��� we are led to the following result	
Suppose that Z � 
Zt�t�T is a positive martingale with dZt � Zt� dMt� where
M � 
Mt�t�T is given by 
��� and E j ZT j� �	 Then in the cases where



	# ftg � R� � f�� �g�

the condition

Kt �

Z t

�

�sdhH
cis �

Z t

�

Z

Y � ��
ex � ��d
 � �� t � T�

implies that there exists a measure ePT constructed by 
���� 
���� 
��� such thatePT � PT and S �Mloc 
 ePT ��
Suppose now that we are interested in the construction of probability mea�

sures ePT with ePT � PT and
S

S�
�Mloc 
 ePT ��

In this case�

St
S�t

Zt �
S�
S��

Z� E
 �H�t E
��
 �H��t E
M�t � 
���

Because of 
���� E
 �H�E��
 �H�� � E
 'H�� where

'H � �H � �H� �
X � �H�
� �H� �� �H�

� �� �H�
�

Moreover� by 
����

E
 �H�E��
 �H��E
M� � E
 'H�E
M�

� E
 'H �M � � 'H�M ��

� E
 'H �M � h 'Hc�Mci�
X

� 'H�M�

� E
 �H � �H� �M � h �Hc � �H�c�Mci

�
X � �H �� �H�

� �� �H�
�M

�
X � �H�
� �H� �� �H�

� �� �H�
�

� E
I�� say� 
���

Again we assume that H� is predictable so that H�c � � and consequently

I � �H � �H� �M � h �Hc�Mci

�
X 
�M �� �H��
� �H �� �H��

� �� �H�
� 
 ��

���



Compare this expression with 
��� when M � � and 
��� when �H� � �	 In

order to �nd now a predictable condition ensuring that S�S� � Mloc 
 eP �� as
before� we search for a decomposition

I � Predictable process � local martingale �

Another way of putting this is� if eI is the compensator 
i	e	 predictable part�
of I � then

eI � � implies
S

S�
� Mloc 
 eP � � 
 ��

Returning to 
 ��� observe the following facts	


a� �Ht � �H�
t �Mt � 
Kt � �H�

t � �
�Hc
t �

Z t

�

Z

ex � ��d
�� 
�

�

Z t

�

�sdH
c
s �

Z t

�

Z
Wd
�� 
�

� 
Kt � �H�
t � � 
local martingale�t�


b� h �Hc� �Mcit �
R t
�
�sdh �H

cis�

The calculation of the compensator of the last 
i	e	
P
�� term in 
 �� is in

general involved	 However� for many interesting special cases 
including those

already discussed in previous sections� the compensator eI can be obtained in
explicit form	 Rather than pursuing the general case as outlined above� in the
next section we shall look at some examples	

���� Some examples

Discrete time In this case�

�I � �M �

� ��M�
� �H �� �H��

� �� �H�

�
�M
� � � �H� � 
� �H �� �H��

� �� �H�
� 
 ��

Again denote hk � �Hk� whence � �Hk � e�Hk � � � ehk � �# we use the same
notation for H�	 Hence� with

�Mn �

Z

Yn
x#	�� ��
�n
dx� � 
n
dx��

� Yn
hn#	��E
Yn
hn#	�jFn����

we obtain from 
 �� that

�In � �Mne
hn�h

�

n � ehn�h
�

n � �

� ehn�h
�
n
�Mn � ��� � � 
 ��

���



Together with the assumed predictability of 
h�n�� we obtain from 
 �� the fol�
lowing key result�

E
�
ehn

�
Yn
hn#	��E

�
Yn
hn#	�jFn��

�
� �

�
jFn��

�
� eh

�

n � n � �

implies 
 ��

S

S�
�Mloc 
 eP ��

Therefore� the existence problem of a 
local� matingale measure eP is reduced to
�nding 
Yn� which satisfy 
 ��	 This task may still seem to be formidable in the
stated generality	 It is exactly at this point that the conditional Esscher transform
de�ned in 
��� enters naturally	 Indeed� we assume that

Yn
hn#	� �
eanhn

E
eanhn jFn���
� 
 ��

where the unknown functions an are Fn�� � measurable	 Our aim is to deter�
mine the an�s in the special case of 
 ��	 With 
 �� we arrive at the following
equation�

E
�
e�an��	hn jFn��

�
� eh

�

nE
�
eanhn jFn��

�
� 
 ��

If the increment sequence 
hn� is iid and h�n � h�� say� then for a � an we
obtain the equation�

Ee�a��	h� � eh
�

�Eeah� � 
  �

Hence in this case� the Esscher transform allows for a special construction of

Yn� by reducing the problem to �nding constants 
an� or predictable functions

an
	�� satisfying 
 ��	 In Gerber and Shiu ����� the construction 
  � is
applied in a �nance context	 See also the references in the latter paper for fur�
ther reading on the subject	 Embrechts ���� discusses the Esscher transform
in the light of �nancial versus actuarial pricing systems	

Processes with stationary� independent increments �S�I�I�	 Let H � 
Ht� be a
process with S	I	I	� continuous in probability� and triplet

B
��t � tb
��

Ct � tC



dt � dx� � dtF 
dx� �

Moreover� H�
t � rt� say	 Then Kt is de�ned in Section ������ In this case�

I � �H � �H� �M � � �H�M ��

���



and from 
���� 
���� 
� � we obtain�

Kt �

Z t

�

�sdhH
cis �

Z t

�

Z

Y � ��
ex � ��d
 � rt 
 ��

implies

S

S�
�Mloc 
 eP ��

The su$cient condition 
 �� can be rewritten as�

t
�
b
�� �

C

�
�

Z

ex � �� �
x��F 
dx�

�
� C

Z t

�

�sds

�

Z t

�

Z

Y � ��
ex � ��dsF 
dx� � rt � 
 ��

Because of the homogeneity 
i	e	 incremental stationarity� of the process� it
seems reasonable to take �s
	� � �� Y 
s�x�	� � Y 
x�	 Then for unknown �
and Y 
x�� 
 �� reduces to�

C

�

�
� �� � b
�� �

Z

ex � �� �
x��F 
dx�

�

Z

Y 
x�� ��
ex � ��F 
dx� � r � 
���

Take as particular case the standard Black � Scholes set�up in �nance� i	e	

St � e	t�
W t � S�t � ert�

In this case� b
�� � � � C � �� � 
 � � so that the condition 
��� reduces to
the well�known equation

�� ��

�

�
� �� � r 
���

and Mt � �Hc
t � ��Wt	 It should be stressed that 
��� can be obtained much

more easily directly� i	e	 without using the general theory introduced above	
Indeed

Zt � exp

�
��Wt �


����

�
t

�
and

St
S�t

Zt � exp

�

�� r�t � �Wt

�
exp

�
��Wt �


����

�
t

�
� exp

�
�
� � ��Wt �
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� � ���

�
t

�
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�

��


�

�
� �� � �� r�t

�
�

Since 

exp

�
�
� � ��Wt �

��
� � ���

�
t

��
t��

is a P �martingale� condition 
��� immediately implies that S�S� � M 
P � and

so S�S� � M 
 eP � where d ePt � ZtdPt	

���



Brownian motion with drift and Poisson jumps Consider the model 
��� with
triplet representation 
���	 Hence from 
��� we obtain the following condition
for 
�� Y 
x���

��

�

�
� �� � b� �

Z
Y 
x�
ex � ��F 
dx� � r 
���

or equivalently�

��

�

�
� �� � b� �E
e� � ��Y 

� � r �

Compare this condition with the condition in Section ������� where � � � � Y �
� and ePt � Pt	 If we consider a solution

Y 
x� �
e�x

Ee��

for suitable �� then we get for 
�� ���

��

�

�
� �� � b� �

E
e� � ��e��

Ee��
� r�

or with �
�� � Ee�� �

��� � �
�
� � ��

�
��
� r � b�

��

�
� ��

�� Conclusion

In order to price and hedge derivative instruments in insurance and �nance� a
no�arbitrage approach leads to the construction of equivalent 
local� martingale
measures of speci�c semimartingales	 For a general class of such processes� in�
cluding discrete models� processes with stationary and independent increments
and certain di
usion models with jumps� a general construction toward obtain�
ing such measures is outlined	 Though these methods are well known in the
literature on general stochastic processes� we found it useful to summarise the
main results and applications of this theory to the context of insurance and
�nance	 In doing so� we hope to contribute to closing the methodological gap
currently existing between both �elds	 The main common tool concerns the
so�called Esscher transform� a time�honoured tool in insurance risk theory	 Its
construction is generalised to the so�called conditional Esscher transform which
may serve a similar purpose within more general pricing models	
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