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1. INTRODUCTION

This paper grew out of a seminar at the Department of Mathematics at the
ETH, Ziirich during the Summer Semester of 1995 on the subject of mathemat-
ical finance and insurance mathematics. It should be viewed as a contribution
towards bridging the existing methodological gap between both fields, espe-
cially in the area of pricing derivative instruments. Both insurance and finance
are interested in the fair pricing of financial products. For instance, in the
case of car insurance, depending on the various characteristics of the driver,
a so-called net premium is calculated which should cover the ecpected losses
over the period of the contract. To this net premium, various loading factors
(for costs, fluctuations,...) are added. The resulting gross premium is also
subject to market forces which imply that a market-conform premium is fi-
nally charged. The more an insurance market is liquid (many potential offers
of insurance, deregulated markets), the more a ” correct, fair” price may be
expected to emerge. Very important in the process of determining the above
premium is the attitude of both parties involved towards risk. Within the more
economic literature this attitude towards risk can be described through the no-
tion of utility. Utility theory enters as a tool to provide insight into decision
making in the face of uncertainty. For a very readable introduction within the
context of insurance, see BOWERS ET AL. [2]. An alternative economic tool
is equilibrium theory. Depending on the economic theory used, a multitude
of possible premiums may result, one of which is the time—honoured Esscher
principle. Rather than being based on the expected loss itself, the Esscher
principle starts from the expectation of the loss under an exponentially trans-
formed distribution, properly normalised. In BUHLMANN [3], [4], the Esscher
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principle is discussed within the utility and equilibrium framework. Besides the
pricing of individual risks (claims, say), more complicated insurance products
involve time and hence are based on specific stochastic processes. The classical
insurance risk processes are of the compound Poisson type or their generalisa-
tions like mixed and doubly stochastic compound Poisson processes. The main
feature of such processes, making them distinct from the typical diffusion type
models in finance, is their jump structure. Indeed, when we turn to fair pricing
in finance, the standard reasoning uses the so-called no-arbitrage (or no free
lunch) approach which says that there is no such thing as a riskless gain. The
precise mathematical formulation of this economic principle brings in the by
now fundamental notion of risk neutral martingale measure. In the case where
the underlying stochastic process is ” nice” (geometric Brownian motion, say),
exactly one such measure exists and the fair price of a contingent claim is the
expectation with respect to this measure, properly discounted. The latter, so-
called complete case is rare in insurance. Due to the jump structure of standard
risk processes, we are in the so-called incomplete case. As a consequence, risk
cannot fully be hedged away and in most cases, there will be infinitely many
such equivalent martingale measures so that pricing is directly linked to an atti-
tude towards risk. Whereas in classical insurance, the question becomes ”which
premium principle to use”, within the (incomplete) finance context it becomes
”which equivalent martingale measure to use”. This is exactly the point where
the Esscher transform enters as one of the possible pricing candidates. Go-
ing back to a fundamental paper of ESSCHER [12], the Esscher transform is
by now standard methodology in insurance, gradually however its appearance
within mathematical finance is becoming more and more prominent: see for
instance the beautiful paper by GERBER and SHIU [15] and the references and
discussions therein. An interesting paper, coming more from the realm of math-
ematical finance is GRANDITS [16]. The present paper should be looked at in
conjunction with BUHLMANN ET. AL. [5] where special attention is given to
discrete models. As explained above, typical insurance processes involve a jump
component besides a possible diffusion term. It is therefore natural to present
the necessary mathematical methodology needed for discussing pricing within
both insurance and finance within the wider theory of semi-martingales. This
is exactly what is done in the present paper. The classical notion of Esscher
transform for distribution functions is generalised to stochastic processes. For
a discussion of Esscher transform in a distributional context, see JENSEN [20].
In EMBRECHTS ET. AL. [11] an application to the approximation of the total
claim amount distribution in the compound Poisson and negative binomial case
is given.

1.1. Some notation

Suppose that a financial process (stock returns, spot rates, zero coupon bonds,
value of a derivative instrument,- - - ) S = (St)¢>0 is given on a filtered probabil-
ity space (Q, F,(F,)t>0, P) where F = (F,)¢>0 denotes the ” flow of informa-
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tion”. Mathematically the latter means that [F consists of an increasing family
of sub o- algebras, i.e. for all s <t, Fs C F; C F. Assume further that S is of
” exponential form”,

St = S[) th, H() = 0, t Z 0, (].)

where H = (H)¢>0 is a semimartingale with respect to F and P. The latter
will be denoted by H € Sem (F,P) or H € Sem (P). We remark that the
notion of semimartingale does not depend on the measure P. More precisely, if
Q ~ P are two equivalent probability measures, then Sem (P) = Sem (Q). For
a precise definition see for instance JACOD AND SHIRYAEV [19] and ROGERS
AND WILLIAMS [28]. Using It6’s formula for f € C?, one obtains:

FHL) = f(Ho) + /f )dH, + 1 /f" d(H°),
+ Z f(Hs—) — f'(Hs—)AH,], (2)

where AH, = Hy—H,_ and (H°) is a quadratic characteristic of the continuous
martingale part H¢ of H. Hence for the case (1) above:

dS; = S;_dH, (3)
with
H = Ht+ (H) + ) (e® —1- AH,). (4)
0<s<t

In the class of semimartingales the linear equation (3) has a unique solution:
St =SoE(H), (5)

where S(ZfI) is called the Doléans stochastic exponential

E(H); = exp {ﬁt - 1(?1%} I a+ AH,)e M (6)

2
0<s<t

It should be remarked that for every semimartingale H = (H;), with probability
one,

> JAH < oo, VE>0. (7)

0<s<t

From (7) it immediately follows that for each ¢ > 0, there are only finitely
many time points s < ¢ such that |AH,| > 1. Consequently, the infinite sums

and products in (4) and (6) are absolutely convergent and hence H and £(H)
are well defined.
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1.2. Discrete time
Consider the set-up (1) but now in discrete time,

Sn:SOeHny HOZO; n=0,1,2,--- (8)

where H = (Hy)n >0 is a stochastic sequence defined on a filtered probability
space (2, F, (F,)n>0,P). Clearly, (8) can formally be considered as a special
case of (1) by defining

Fe=F,, H=H, , n<t<n+ 1
Put

H,= > (eAM—1) (9)

0<k<n

(to be compared with (4)), then we obtain

Sn==5 [] (1+AH) =S0E(H),. (10)
0<k<n

The latter should be compared with (5) and (6). In the sequel we denote
hie = AHy(= Hy, — Hp_1)

and
hy = AHy(= Hy, — Hy_4).

Recall that

Sk

h =1
b nskfl

and hence can be viewed as a compound return, whereas

A AS:
by = 1= — et 1
b S Sk—1 ¢

stands for simple return. Using this terminology and the correspondances
stated above, (1) can be viewed as a continuous model for compound return,
whereas (5) is the continuous analogon of simple return. It is useful to remark
that the representation (1) lends itself naturally for statistical data analysis.
However, with respect to probabilistic analysis, the representation (5) turns out
to be more advantageous. An example of the latter is the following: £(H) is a
local martingale sz[ s a local martingale.
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1.8. No-arbitrage and equivalent martingale measures.
The ” equivalence ” of the notions no-arbitrage, no free lunch and the existence
of equivalent martingale measures belongs to the folklore of mathematical fi-
nance. The key underlying idea is the local equivalence of martingale measures,
ie. P'¥ Pon (2, F) meaning that for each t > 0, P, ~ P, (equivalence of
probability measures) where P, = P|F;, P = ﬁ|}'t and such that S = (S;)
is a martingale or local martingale with respect to P.

In discrete time, n = 0,1,--- , N, the precise formulation of the above is as
follows.
Equivalent are

(a) no-arbitrage, and N N
(b) there exists a probability measure P on (Q,F) so that Py ~ Py and
S = (Sn)n< N is a Py -martingale.

In the continuous time case, the situation is much more delicate. A solution is
to be found in DELBAEN AND SCHACHERMAYER [7] and [8] and the references
therein. Independent of the precise equivalence statements, the construction
of all equivalent martingale measures in a particular situation is important.
A slightly less ambitious goal would be the construction of certain subclasses.
The main aim of our paper is exactly the solution of this technical problem.
We shall also discover the so-called conditional Esscher transform as a special
case of the change of measure paradigm in stochastic calculus.

2. SOME FACTS ABOUT SEMIMARTINGALES

2.1. Definition

Below we summarise the basic definitions and results concerning semimartin-
gale theory of relevance in insurance and finance. The cadlag (right-continuous
with left limits) stochastic process H = (H¢):>o defined on a filtered prob-
ability space (Q,F, (F¢)¢>o0,P) is a semimartingale if H admits a canonical
decomposition

Ht :H0+At+Mt7 t Z 07 (11)

where A = (A;) € V (a process of bounded variation), M = (M) € M. (a
local martingale). Furthermore, we have that for each ¢ > 0, A; and M; are
Fi-measurable.

We recall that M € M, if and only if there exists a sequence of (F,):>o0
-stopping times (7,)n>1 such that 7, 1+ co (P —a.s.) for n — oo and for
each n > 1, the stopped process

M™ = (M[") with M/™=Mir.,,, n >1,
is a martingale:

E|M["| < oo, E(M"|Fs) =M (P—as), s <t.
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We would like to stress that local martingales are more than just martingale
modulo boundedness conditions. Indeed, there exist local martingales pos-
sessing strong integrability properties which nonetheless are not martingales.
See for instance REVUZ AND YOR [26], Chapter V, Exercise (2.13) where a
local martingale is given, bounded in L2, but which is not a martingale. In
the case of discrete time, we have the following nice characterisation of local
martingales; see for instance JACOD AND SHIRYAEV [19], Chapter 1,1.64 or
LIPTSER AND SHIRYAEV [23], Chapter VIL,§1. Let X = (X,,), >0 be a stochas-
tic sequence defined on a filtered probability space (0, F,(F,)n>0,P). X is
assumed adapted, i.e. X,, is F,, - measurable for all n > 0 and E|Xy| < oc.
Then the following conditions are equivalent;:

(1) X is a local martingale,

(2) X is a martingale transformation, i.e. there exists a martingale Y = (Y,,)
and a predictable sequence V = (V,,) (meaning that for each n > 1, V,
is Fn—1 - measurable) such that for n > 1:

Xo=Xo + Y, VAV, AV =Y -Yi g,
0<k<n

(3) X is a generalised martingale, i.e.

E(|Xp||Frno1) < o0, m>1,

and
E(Xn|.7:n_1) =X,_1.

(The key point in the latter conditions is that we do not assume integrability
of Xp,,n > 1)

REMARK: The condition (2) above can be interpreted as X,, is the value of
a trading strategy V' on an underlying asset Y. This shows that the notion
of local martingales lies at the heart of stochastic processes in finance and
insurance. Unfortunately, the continuous time analogue of the above result is
false.

2.2. Semimartingale representations
Denote by p = p(w;ds,dx)(or du) the measure describing the jump structure
of H:

pw; (0,11 x A) = > I(AH,(w) € 4), t>0.

0<s<t

where A € B(R\{0}),AH; = H; — H;_ and I(-) stands for the indicator
function. By v = v(w;ds,dz) (or dv) we denote a compensator of p, i.e. a
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predictable measure (see JACOD AND SHIRYAEV [19], Chapter II, 1.8) with the
property that u — v is a local martingale measure. This means that for each

A € B(RN{0}):
(1(w; (0,] x A) = (w3 (0,4] x A)

t>0

is a local martingale with value 0 for ¢ = 0. The latter property is almost
equivalent to the local martingale property of the signed measure y — v. We
shall not enter into the subtle difference here.

A semimartingale H = (Hy); >0 is called special if there exists a decompo-
sition (11) with a precticable process A = (A¢)¢>0. See JACOD AND SHIRYAEV
[19] where it is also shown that every semimartingale with bounded jumps
(|AH(w)| <b < oo, weQ, t>0)is special.

Let ¢ be a truncation function, e.g. ¢(z) = xzI(Jz|] < 1). Then AH; —
»(AH,) # 0 if and only if |[AH,| > b for some b > 0. Hence

Hpk= Y (AH, - o(AH,))

0<s<t

denotes the jump part of H corresponding to big jumps. The number of the
latter is still finite on [0, ¢], for all ¢ > 0, because for all semimartingales

Z (AH,)? < o0, P —a.s.
0<s<t

V
The process H(p) = H — H(yp) is a semimartingale with bounded jumps and
hence it is special:

H(p)t = Ho + B(p): + M ()¢, (12)

where B(¢p) is a predictable process and M () is a local martingale.
Every local martingale M () can be decomposed as:

M(p) = M*(p) + M*(p), (13)

where M¢(yp)is a continuous (martingale) part and M9 () is a purely discon-
tinuwous (martingale) part,

M) = | t [ e@i =) (14)

More details, including a proof of (14), are to be found in JACOD AND SHIRYAEV
[19], Chapter II, 2.34. It is clear that

H(p), = / t [ @ e@in. (15)
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Consequently H has the following canonical representation:

n
/Ot/ﬂm)d(u —v)+ /Ot /(a: — o(z))dp, (16)

a formula going back to Lévy and Khintchin.
The continuous martingale part M°(p) does not depend on ¢ and will be
denoted by H€ (the continuous martingale part of H). Consequently,

Hy = Ho + B(p): + M¢(¢):

H, = Hy+ o)+ H + | t [ e@itn-v)

+ t [ @~ e@)an (17)

Denote by (H¢) a predictable quadratic characteristic of H¢, i.e. (H®)? — (H¢)
is a local martingale.

We finally arrive at the triplet of predictable characteristics of the semi-
martingale H:

T(p) = (B(p), (H),v).

In the case ¢(z) = zI(]z| < 1) we denote B = B(p). Then (17) takes on the
form:

t
Ht:H0+Bt+Htc+// xd(p — v)
0 Jz|<1

+/Ot/z>1a:d,u. (18)

In JACOD AND SHIRYAEV [19], Chapter II, 2 it is shown that if H is a semi-
martingale, then

AB(e)(w) = [ el {t) x do),
where
v(w; {t} x dz)=v(w;(0,t] x dz)—v(w;(0,t) x dz)

and
(2 A1) % v € A,

i.e. the process (f[;t J(@® Al)dv);>o is locally integrable in so far that there
exist stopping times 7, T 0o as n — 00, such that for n > 1

E(/OT"/(xQAl)dV) < 0.
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Using this notation, H turns out to be a special semimartingale if and only if
(12 A |1‘|) ¥V € Aloc-

Further, H is a square integrable semimartingale if and only if

22 % v € Apoe-
If H is a special semimartingale, then the canonical representation (17) is valid
with p(z) = z, i.e.

t
Ht:H0+Bt+Htc+//:rd(u—l/), t>0, (19)
0

with B = B(yp).

There are various reasons why semimartingales play a fundamental role in
insurance and finance (and indeed in many more applications):

(i) They form a wide class of processes including stochastic sequences in dis-
crete time, martingales, super - and sub - martingales, diffusion processes,
diffusions with jumps, processes with independent increrements (if for ev-
ery A € R, (Ee*t); 5 o has bounded variation). This is especially impor-
tant in the intersection of insurance and finance where models involving
both a diffusion component as well as a jump component are relevant.

(if) They form the most general class of stochastic processes for which a stochas-
tic integration theory can be worked out, the latter is a consequence of the
famous Bichteler, Dellacherie, Kussmaul, Métivier and Pellaumail theorem
(see ROGERS AND WILLLIAMS [28], Section IV. 16). A full stochastic cal-
culus, including It6’s lemma for semimartingales exists.

(iii) The knowledge that a stochastic process is not a semimartingale may have
important implications in finance in so far that then often explicit arbi-
trage strategies can be worked out. A typical example concerning so-called
fractional Brownian motion is to be found in ROGERS [27]. See also DEL-
BAEN AND SCHACHERMAYER [7] where it is shown that a very weak form
of the no-arbitrage property implies that the price process is already a
semimartingale.

2.3. Ezamples

Discrete time In this case we don’t really need the heavy semimartingale
machinery, we only include this case for illustrative purposes. Consider the
stochastic sequence H = (Hy)n >0 with h, = AH, = H, — H,,_;1.
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Hence,

Hy,=Ho + Y

0<k<n

=Hy + > oh)+ > (h—plht)) (20)
0<k<n 0<k<n

=Hy + Y Elp(ht)|Fe1]
0<k<n

+ Y () - Elph)|Fie )+ S (e — (B

0<k<n 0<k<n

Define for all A € B(R\ {0}), k> 0:

pe(A) = I(hy € A) = I(AHy € A),
I/k(A) = E[I(hk S A)|.7:k71] = P(hk € A|-7:k71);

where conditional expectations are always taken as regular versions. Then

plw; (0,n] x A) = Y uk(A),

0<k<n

v(w; (0,n] x A) = > w(A),

0<k<n

yielding the canonical representation (see (17))

Hy=Ho+ B+ ) / (i = i)

0<k<n
+ Y [@-edn, (21)
0<k<n
where
= Y / z)dvy,. (22)
0<k<n
(We could have written v (dz) for dyy, etc. ...) Because there is no continuous
part, the characteristic triplet reduces to
T(p) = (B(¢),0,v) (23)
where

B(p) = (B(So)n)nzmz A6 v = (Vn)nZI-
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Processes with independent increments (I.1.) A process H = (Hy); >0 with LI
is a semimartingale if and only if for each A € R, (Ee!*Ht), 5 is a function
of bounded variation. For a proof, see JACOD AND SHIRYAEV [19], Chapter
I1,4.14. A remarkable fact for such processes is that their triplet of predictable
characteristics only has deterministic components. If H = (H;) is continuous
in probability, then B(p):, < H¢ >; and v((0,%] x dz) are continuous in ¢ and
the Lévy - Khintchin formula yields

. i )\2
E exp{i\(H; — Ho)} = exp {iAB(p); — ?Ct

t AT _ 1y x))v(ds T
+/0/<e 1 - idp(e))p(ds x do)} (24)

where Cy =< H¢ >, is the variance of the continuous Gaussian part of H, and
B(p) and v are the first and third component in the triplet T'(¢) = (B(p), <
H°¢ >,v) of H written in semimartingale form. If the L.I. process is moreover
homogeneous (stationary), also referred to as a Lévy process, then

B(p)r = tb(p)
Cy =tC (25)
v(dt x dz) =dt x F(dx)

where F is a distribution function on R. For a textbook treatment of Lévy
processes, see BERTOIN [1]. Hence in this case the triplet T'(p) is reduced to
(b(), C, F'(dz)).

Brownian motion with drift and Poisson jumps Suppose that

Ny
Hy=bt+oW;+ > _ & (26)
k=1

where &£, &1,&,... are iid random variables with F(z) = P({ < z),N =
(Nt)t >0 is a homogeneous Poisson process with intensity A > 0, and W =
(We)¢>o is standard Brownian motion. Suppose furthermore that the pro-
cesses W, N and (§;) are jointly independent. In this formulation, H in (26)
in the recent literature either occurs as a classical risk process perturbed by
Browian motion(see GERBER [14])) or as a model for catastrophic insurance
futures (see for instance CUMMINS and GEMAN [6])
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Then
N
H = bt+oW,+> & (27)

= bt—l—UWt—i—/t/a:d,u
= bt—l—/ / x)dv) + (oW + / /

+( / / (¢ — o(@))dp)
= o+ [ o) Fid) + @+ [ [ ot

«f [ enan.

T(p) = (B(p), (H),v),

Consequently,

where

B(g): = t(b + A / () F(dz)),
< H¢ > = O'zt, (28)
dv = \dtF(dx).

Diffusion processes with jumps These processes can be viewed as semimartin-
gales with predictable characteristic triplet T'(¢) = (B(yp), C,v) where

B((p)t = /0 b(S,Hs)dS, (b = Blp))

t
C, = / (s, H,)ds (29)
0
v(w;dt x dz) =dt x Ki(Hg(w),dz),
where Ki(z,dy) is a Borel transition kernel from Ry x Rin R; see JACOD AND

SHIRYAEV [19], Chapter III,2.

2.4. Conditional Esscher transforms

Consider a semimartingale H = (H;)¢>o  with triplet T = (B,C,v) where
we dropped for notational convenience the dependence on . Also for simplicity,
we take p(x) = zI(|z| < 1). We first introduce the cummulant process A(u) =
(A(u)t)¢ >0 associated with H:

A(u); = iuB; — %zﬁct + /(e““” — 1 —dugp(z))r((0,t] x dz). (30)
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Suppose that AA(u) # —1, then the stochastic exponential G(u) = £(A(u))
defined in (6) cannot take zero values. Now define the process

eith
E(A(u))

An important property of semimartingales is the following characterisation:

Xi(u) = > 0. (31)

H is a semimartingale with triplet (B, C,v)
if and only if (32)

X = (X¢(w))e>0 s a local martingale for every u € R;
see JACOD AND SHIRYAEV [19], Chapter II, 2.49. For discrete time processes,
(30) reduces to

AA(u), = /(e““” — Vv, (dz) = E(e™' — 1|F, ). (33)
However, in this case (6) implies that

EAW)n= [ (1 +AaA()y),
0<k<n

= H E(eiu’l"|.7:n_1).

0<k<n

Hence in discrete time for a stochastic sequence H = (H,,) with AH,, = h,
and so that E(e®“"|F, ;) # 0,n > 1, the sequence

eian
- 34
H0<k§nE(eZUhk|-7:kfl) . ( )

is a local martingale. Of course we don’t need the deep characterisation result
(32) in order to prove (34), a more direct argument can be given in this case.
Similarly, suppose Ee®" < oo, k > 1, for some constants ai,as,..., then
the sequence Z = (Z,)n>1 with Zg =1 and

QA hk

€
Tn = S
o= I pemmy

(35)
is a martingale. The latter follows immediately from the adaptiveness of H
and elementary properties of conditional expectation. Property (35) allows us
to construct a family of measures { Py } such that dPy = ZnydPy and

Py = Pny1|Fn. The conditional distribution

~ eN hxn

Pn(hy € A|FN-1) = E IA(hN)WML}—NfI (36)

303



is called the conditional Esscher transform. In the traditional actuarial context,
the h;’s are independent and hence (36) reduces to an unconditional expecta-
tion, the Esscher transform:

PN(hN S A) =F IA(hN)

et ] . (37)

Eeanhy

3. PREDICTABLE CONDITIONS FOR S € Moc (P),S € M (P)
3.1. One asset

In order to investigate whether S € M(P) (ie. S is a P-martingale)it may
be more convenient to first look for conditions so that S € Mi,c(P) (i.e. S
is a local P-martingale) and then use the result in Jacod and Shiryaev [19],
Chapter I, 1.47 that a local martingale S is a uniformly integrable martingale
if and only if S belongs to the class (D), that is the set of random variables
{St : T finite stopping time} is uniformly integrable. We hence start with
the representation (5), i.e. .
St = SoE(H);

and use the property (see Section 1.2) that
S € Mioe (P) if and only if H € Myoe (P). (38)

From (4) and (17) we obtain:

N 1 t
Ht:Ht+§<Hc>t+/ /(ez_l_m)du
0

= Ho + B(p): + Hf + %(H‘f)t +/0 /cp(a:)d(u —v) (39)

+/0t/(m—<p(x))d,u+/0t/(€x—1—$)dﬂ

= Ho + B(p): + Hy + %(H‘f)t + /0 /w(m)d(u —v)

+ /Ot /(e”” S 1~ (@))dp.

Suppose now that |e* — 1 — ¢(z)| * v € Ajpe (i-e. the process (fot [le* =1
— ¢(x)|dv); > o is locally integrable), then

/0/< —l—w(w))dMZ/Ot/(ex — 1 p(a)dv
v f t [ -1-g@yiw-v, @)

where the last integral is a local martingale; see JACOD AND SHIRYAEV [19],
Chapter II, 1.28 and LIPTSER AND SHIRYAEV [23], Chapter ITI,§ 5. Hence from
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o= Ho+ Blo)+ Hi + 50 + [ [ =1 ot

+/Ot/<ez 1= @) ) +/Ot/so(w)d(u )
:H0+Kt+Hf+/0t/(e”” ~Dd(u - v),
where (see (30))
Ki = A(=i)s = Blg)s + 3 (H)
+ [ t [ = 1= panan (41)

Therefore H, = K, + (local martingale);. Since K = (K;) is a predictable
process, it follows that

H e Mige (P) if and only if K =0.

See JACOD AND SHIRYAEV [19], Chapter I, 3.16 and LIPTSER AND SHIRYAEV
[23], Chapter 1,6, Theorem 4 for more details.

3.2. Two assets
Suppose that we now have a second asset S° = (S7); > with

SO = S0 eHY . (42)

Similar to the discussions above (see (4)) we introduce

- 1
H} = H) + 5(H*): + S (eAH —1- AHY) (43)
0<s<t
and obtain .
S? = SY E(HO),.
Therefore
Se_ S0 & (H): (44)
S S8 £(HO),
It is now easy to check by Itd’s formula that
E(H"); Y = E(—H™),, (45)
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where

R R . A[_AIO 2
Hf =H) — (H™), - ) (7)0 : (46)
0<s<t L+ AHS
From (44) and (45) we obtain that
St _ S0 o0 -
S E(Hi) & (=H")s. (47)

If in general U,V € Sem/(P), then the so-called Yor addition formula (see for
instance ROGERS AND WILLIAMS [28], Section IV. 19) yields

EMHEWV)=EU+V +[U,V]) (48)
with the quadratic covariation process

U,V = (U V) + > AUAV,. (49)

0<s<t
So from (47), (48):

S So .~ N N .
— =—¢6H-H"+[H,—H"));.
It is not difficult to check that

A

H—H+[H -0 =H-H°+ (0" - 0, 1)
AH°(AH® — AH

'y ( - )
1+ AHO

If SO stands for a riskless asset, i.e. HO is predictable, then H% = H =0
and

Sy S . AHO(AH® — AH)
— =_¢(H-H"+ . ) 50
Sp S0 ( 2 L am ) (50
Hence
S
@ € Mloc (P)
if and only if (51)

H-f+ AHO(AH® — AH)

1+ AHO € Mioc (P)
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The result (51) can be very useful in finding sufficient conditions for 5/S° to be
a local P— martingale. For instance, if AH? = 0, then HY = H? (we suppose
that H? is predictable) and we obtain
- S
K; — H) =0 implies 50 € Mioe (P). (52)

Also, if AH = AH°, then

Ke—HY— Y (AT -1-AH?) =0

0<s<t
implies (53)

S
@ € Mioe (P)

3.8. Examples
Discrete time In the case of discrete time

70 70 _ A T _ AFO
H—H0+ZAH (AH - AH) :ZAH AAH ,
1+ AHY 1+ AH®
so that because of (51),
S
@ EM[OC(P)
mboxif and only if
hi — Y
Y ke My (P) - (54)
hen L+

However hy, = e —1,hY = eh — 1, so that by Fi_1- measurability of h we
obtain the following sufficient condition

o S
E(ehk|.7:k—1) = ehk’ k > 1 implies ﬁ € Mioc (P)

Processes with independent increments Suppose that H = (Hy) > ¢ is a process

with independent, increments, the triplet T'() given by (25) and let H? = rt.
Then

K, = t(b((p) + % + /(e”” -1- w(w))F(dﬂf)),

so that

b(p) + % + /(e”” —1—p(z))F(dr) = r implies % € Mioe (P).
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Brownian motion with drift and Poisson jumps For the notation, see Section
2.3.3. In this case

K, =t(b+ %2 + A/(e”” —1)F(dz)),

whence

2
b+ % + AE(e® —1) = 7 implies % € Mo (P).

4. PREDICTABLE CONDITIONS FOR THE EXISTENCE OF A LOCALLY
EQUIVALENT PROBABILITY MEASURE P SUCH THAT S € M,. (P), S € M (P)
4.1. General results

If we have a measure P ' P , then the likelihood (Radon-Nikodym derivative)
process Z = (Z;)¢>o with

dP;

Z, =t
T ap,

(55)

is strictly positive (Z; > 0, P and P - a.s.,t > 0; see for instance ROGERS
AND WILLIAMS 1987, Theorem IV,17.1. We therefore can define the process

M = (My)>0 as follows:
tdz,
mi= [ (56)

which satisfies M € My, (P). Since dZ; = Z;_ dM;, we have that

Zy = Zo E(M)¢ (57)
where
EM), = exp{M, — (M%) [T (14 AM)e 20 (58)

The local martingale property of M implies that the following decomposition
holds:

¢ ¢
M; =M0+/ ﬁsdH§+/ /W(',S:Zﬂ)d(ﬂ—V)+Mt,
0 0

where 8 and W satisfy some integrability conditions (see JACOD AND SHIRYAEV
[19], Chapter ITI, 4.24) and M is a residual martingale part which is orthogonal
to [, BsdH and [; [ W(-,s,z)d(p—v). Unfortunately, we do not have sufficient
tools in order to control the properties of M. However, for many interesting
cases, M = 0. The latter for instance holds if the triplet T(¢) = (B, C,v) for
H defines the distribution of H uniquely. The following are cases where this
property holds:
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(i) Processes with independent increments.

(if) Strong solutions of stochastic differential equations with respect to Brow-
nian motion.

(iii) In the case of Poisson random measure in discrete time where v(w, {n}
x A) = P(AH, € A|Fn-1),n > 1, which gives us the possibility to calcu-
late the (unconditional) distribution of (H,)n>0.

A possible approach consists of considering the structure of Z under the as-

sumption that P % P exists. Hence assume that Z —= (Zt)t>0 satisfies the
representation (57) — (58), where

M; :Mg+/OtﬁsdH§+/0t/W(.,s,a:)d(u—l/). (59)

Can we from this representation deduce the existence of P? This approach
may work if at least the characteristic triplet of H defines the measure P (i.e.
the law of H) uniquely. We assume the finite horizon case 0 <t < T < oo and
normalise £ Z7 = 1. In this case we can simply define

dPr = Zy dPr.

The difficult part in this plan de campagne is to find conditions on (8, W) and
(B,C,v) which imply that Z = (Z;)o<t<7 is a martingale with EZy = 1.
A whole series of papers exists on this topic, see for instance JACOD AND
MEMIN [18], LIPTSER AND SHIRYAEV [22], NOVIKOV [24], [25], LEPINGLE and
MEMIN [21] and GRIGELIONIS [17]. (See SCHACHERMAYER [29] and DELBAEN

AND SCHACHERMAYER [9] for a case where M cannot be taken to be zero!) So
suppose that M = (M;)o<¢<7 defined as in (59) is a positive martingale with
E Zr = 1. We now want to understand which conditions on (3, W) imply that
S € Mjpe (IST) First observe that

SZ € Mo (Pr) implies S € My, (Pr), (60)

(see JACOD AND SHIRYAEV, Chapter III, 3.8) so that it suffices to find condi-
tions implying

E(H)E(M) € Myge (Pr) - (61)
Also note that

I;[Z € Mo (PT) = ﬁ € Mioec (ﬁT)
& E(H) € M. (Pr)
& Se Mloc (ﬁT)a
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so that instead of checking (61), one may look for conditions implying
HE(M) € My, (Pr). (62)

One easily shows that (61) and (62) are equivalent.
From (61) and Yor’s formula ((48)) one obtains:

EHEM) =E(H + M + [H, M)
=E(H+ M+ (H, M)+ AHAM)- (63)

Moreover, (41) yields
. t
Ht:Kt+Hf+/ /(ez—l)d(p—u)- (64)
0

From (59) and (64), assuming that the process [H, M] is locally integrable, we
can find its compensator [ﬁ ,M]. The latter is a predictable process with the

property that [, M] —[H,M] € My, (P). The following form results see also
JACOD AND SHIRYAEV [19], Chapter II, 2.17:

[H, M), :/Otﬂsd(Hc>s+/0t/W(e””—l)du
- Z/W(s,w)v({s} X dw)/(e”” — Dv({s} x dz). (65)

s<t

It turns out to be convenient to denote W = Y — 1. The main reason for
this is the following. If H is a P— semimartingale with triplet (B, C,v) and
dﬁT = ZrdPr, then H is also a PN’T— semimartingale with triplet (E,é’,ﬁ)
where dv = Ydv, Y(w,t,x) is positive and predictable and the process W in
the definition of M (see (59)) has the following representation (JACOD AND
SHIRYAEV [19], Chapter III, 5.19)

A

Y —
W:Y—1+1—aI(a<1), (66)
—a

a = (at(w)) where a;(w) = v(w; {t} x R)
Y, = /Y(w,t,m)u(w;{t} x dx) -

Both in the so-called quasi-left continuous case (i.e. a; = 0) as well as in the
discrete-time case where a;(w) = P(AH; € R|F;—1) = 1 we have that W =
Y — 1. Therefore, as a corollary we obtain

[, N], = /Ot Bud(H), + /Ot /(y —1)(e® = 1)dv - (67)
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Together with (59), (63) and (64) we are led to the following result.
Suppose that Z = (Zs)i<7 is a positive martingale with dZ; = Zy — dMy, where
M = (My)i<t is given by (59) and E | Zr | = 1. Then in the cases where

v(w; {t} x R) € {0,1},

the condition
t t
K, +/ Bsd(Hs +/ /(Y —1)(e* —1dv=0, t<T,
0 0

implies that there exists a measure Pr constructed by (56), (59), (66) such that
ﬁT ~ Pr and S € M, (.ZST)

Suppose now that we are interested in the construction of probability mea-
sures Pr with

~ S ~
Pr~ Pr and @ € Mioe (PT)
In this case,
St ., So

o5 2t =g Zo E(H) £ (H) E(M), - (68)
t 0

Because of (51), £(H)E 1 (H®) = £(H), where
AHO(AH® — AH)

H=H-H°+ _ :
) YN

Moreover, by (63),

EH)EYHNE(M) = E(H)E(M)

=E&(H + M + [H, M)
=E(H + M+ (H°, M)+ Y AHAM)
=E(H - H® + M + (H® — H°, M°)

AH — AH®

2 1+ AH° AM
AHO(AH® — AH)
> 1+ AH° )

= £(1), say. (69)

Again we assume that H° is predictable so that H° = 0 and consequently
I=H—H°+ M+ (H, M)
AM — AH°)(AH — AH®
iy A )
1+ AHO

: (70)
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Compare this expression with (51) when M = 0 and (63) when H° = 0. In

order to find now a predictable condition ensuring that S/S° € My,. (P), as
before, we search for a decomposition

I = Predictable process + local martingale-

Another way of putting this is: if I is the compensator (i.e. predictable part)
of I, then

I =0 implies % € Mo (P) - (71)

Returning to (70), observe the following facts.

(a) m—@+m/=u94m+m+[/w—mm—w

+/0tﬁsdH§+/0t/Wd(u—u)

= (K — H?) + (local martingale),,
] c Y c t 8 Cc
(b)  (H, M) = [, Bsd(HC)s-

The calculation of the compensator of the last (i.e. )  —) term in (70) is in
general involved. However, for many interesting special cases (including those
already discussed in previous sections) the compensator T can be obtained in
explicit form. Rather than pursuing the general case as outlined above, in the
next section we shall look at some examples.

4.2. Some examples
Discrete time In this case,

(14+ AM)(AH — AH®)

Al =AM + -
1+ AHO
_ AM(1+AH) + (AH - AH) (72)
B 14+ AHO°

Again denote hy = AHy, whence A.F:Tk =eAHr 1 = el —1: we use the same
notation for H°. Hence, with

AMy = [ (Valai0) = 1) da) = vn(d2)
= Yo (hn;w) = E(Yn(hn;w)| F1),
we obtain from (72) that
Al, = AMpehn=hn 4 ehn=hn 1
= et (AM, +1) - 1- (73)
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Together with the assumed predictability of (h), we obtain from (73) the fol-
lowing key result:

E[e" (Yn(hn;w) = E(Yn(hn; )| Fu1) + 1)|Fua] =€, n > 1
implies (74)

S ~
ga E.A4wc(fﬁ-

Therefore, the existence problem of a (local) matingale measure P is reduced to
finding (Y},) which satisfy (74). This task may still seem to be formidable in the
stated generality. It is exactly at this point that the conditional Esscher transform
defined in (36) enters naturally. Indeed, we assume that

eanhn

Yo (hn; = )
(hni @) = Fe 7

(75)

where the unknown functions a,, are F,_1 - measurable. Our aim is to deter-
mine the a,’s in the special case of (75). With (74) we arrive at the following
equation:

E[e(an+1)hn|}‘n_1] = eth[ea"h"|.7:n_1] : (76)

If the increment sequence (h,) is iid and h® = hY say, then for a = a,, we
obtain the equation:

Eela+hi — ohi peahs | (77)

Hence in this case, the Esscher transform allows for a special construction of
(Y},) by reducing the problem to finding constants (a,,) or predictable functions
(an(w)) satisfying (76). In GERBER AND SHIU [15], the construction (77) is
applied in a finance context. See also the references in the latter paper for fur-
ther reading on the subject. EMBRECHTS [10] discusses the Esscher transform
in the light of financial versus actuarial pricing systems.

Processes with stationary, independent increments (S.I1.1.) Let H = (H) be a
process with S.I.I., continuous in probability, and triplet

B(p): = tb(p)
(h ::ﬂ?
v(dt x dz) = dtF(dx) -

Moreover, HY = rt, say. Then K; is defined in Section 3.3.2. In this case,

I=H—H"+M+[H M],
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and from (59), (64), (67) we obtain:

Kt+/ﬁs d(H)s // —1)(e® —1)dv =rt (78)

implies

S
@e-/\/tloc( )

The sufficient condition (78) can be rewritten as:
C
t(b(p) + = +/(e —1—(z))F(dz)) +C/Bsds
/ / ~1)(e” — 1)dsF(dz) = rt - (79)

Because of the homogeneity (i.e. incremental stationarity) of the process, it
seems reasonable to take (s;(w) = 3,Y (s.z.w) = Y(x). Then for unknown
and Y (x), (79) reduces to:

C +8) +e) + [ = 1= pla) F(da)
+ /(Y(a:) —1)(e®* —=1)F(dzx) =r- (80)

Take as particular case the standard Black - Scholes set-up in finance, i.e.
St — e,ut+0'Wt , S? — ert_

In this case, b(p) = u, C = 0>, v = 0 so that the condition (80) reduces to
the well-known equation

u+a2(%+ﬂ)=r (81)

and My = BHf{ = BoW;. It should be stressed that (81) can be obtained much
more easily directly, i.e. without using the general theory introduced above.

Indeed
Ca

Z; = exp {ﬂaWt -

Oty = exp{(,u—r)t—l—UWt}eXp {ﬂaWt - (ﬂ0)2t}

2
exp {a(l + AW, — Mt} exp {(02(% +8) +p— r)t} -

Since

2

is a P-martingale, condition (81) immediately implies that S/S° € M (P) and
s0 S/8% € M (P) where dP, = Z,dP,.

(exp {0’(1 + B)W, — Mt})tzo

314



Brownian motion with drift and Poisson jumps Consider the model (26) with
triplet representation (28). Hence from (80) we obtain the following condition

for (8,Y (x)):
02(% +8) +b+ A/Y(x)(ew _1)F(dz) = r (82)
or equivalently,
02(% +B)+b+AE(ef — )Y (¢) =1

Compare this condition with the condition in Section 3.3.3., where 8 =0, Y =
1 and P, = P;. If we consider a solution

eaz

V(@) = Fose

for suitable «, then we get for (a, 8):

1 E(ef — 1)e¢
2 — _— =
07 (5 +0) + b+ A—7—% T,
or with ¢(a) = Ee®¢,
P(a+1) o?
Bo? + A\——L =r—b—— —\
¥(a) 2

5. CONCLUSION

In order to price and hedge derivative instruments in insurance and finance, a
no-arbitrage approach leads to the construction of equivalent (local) martingale
measures of specific semimartingales. For a general class of such processes, in-
cluding discrete models, processes with stationary and independent increments
and certain diffusion models with jumps, a general construction toward obtain-
ing such measures is outlined. Though these methods are well known in the
literature on general stochastic processes, we found it useful to summarise the
main results and applications of this theory to the context of insurance and
finance. In doing so, we hope to contribute to closing the methodological gap
currently existing between both fields. The main common tool concerns the
so-called Esscher transform, a time-honoured tool in insurance risk theory. Its
construction is generalised to the so-called conditional Esscher transform which
may serve a similar purpose within more general pricing models.
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